

В пределах биосферы можно выделить четыре основные среды обитания. Это водная,наземно-воздушная, почвенная среда и образуемая самими живыми организмами. Вода служит средой обитания для многих организмов. Из воды они получают все необходимые для жизни вещества: пищу, воду, газы. Поэтому, как бы ни были разнообразны водные организмы, все они должны быть приспособлены к главным особенностям жизни в водной среде. Эти особенности определяются физическими и химическими свойствами воды. Наземно-воздушная среда, освоенная в ходе эволюции позже водной, более сложна и разнообразна, и её населяют более высокоорганизованные живые организмы. Наиболее важным фактором в жизни обитающих здесь организмов являются свойства и состав окружающих их воздушных масс. Плотность воздуха гораздо ниже плотности воды, поэтому у наземных организмов сильно развиты опорные ткани — внутренний и наружный скелет. Формы движения очень разнообразны: бегание, прыгание, ползание, полёт и др. в воздухе летают птицы и некоторые виды насекомых. Потоки воздуха разносят семена растений, споры, микроорганизмы. Жизнь почвы необычайно богата. Некоторые организмы проводят в почве всю свою жизнь, другие — часть жизни. Условиями жизни в почве во многом определяются климатическими факторами, важнейшим из которых является температура. Тела многих организмов служат жизненной средой для других организмов. Условия жизни внутри другого организма характеризуются большим постоянством по сравнению с условиями внешней среды. У них не развиты органы чувств или органы движения, зато возникают приспособления для удерживания в теле хозяина и эффективного размножения.

Биосферный круговорот непременно включает живые и неживые компоненты. Органическое вещество может быть вновь использовано растениями только после разложения редуцентами до неорганических составляющих. Связь между живым и неживым веществом в биосферном круговороте осуществляет миграция химических элементов, входящих в состав как органических, так и неорганических соединений.
Основным источником энергии для поддержания жизни в биосфере является Солнце. Его энергия преобразуется в энергию органических соединений в результате фотосинтетических процессов, происходящих в фототрофных организмах. Энергия накапливается в химических связях органических соединений, служащих пищей растительноядным и плотоядным животным. Органические вещества пищи разлагаются в процессе обмена веществ и выводятся из организма. Выделенные или отмершие остатки разлагаются бактериями, грибами и некоторыми другими организмами. Образовавшиеся химические соединения и элементы вовлекаются в круговорот веществ. Биосфера нуждается в постоянном притоке внешней энергии, т.к. вся химическая энергия превращается в тепловую. Поэтому запасание растениями солнечной энергии в органических веществах играет исключительно важную роль в распределении и численности живых организмов.

В палеозойской эре происходит начальный этап накапливания нефти и газа органического происхождения углерода. В каменноугольном периоде на суше широко распространились леса, состоящие главным образом из папоротников и хвощей. Именно из упавших в воду стволов деревьев, не подвергающихся гниению, образуются огромные запасы каменных углей.

Одной из специальных групп аммонификаторов являются бактерии, разлагающие мочевину. Мочевина — главная составная часть мочи человека и большинства животных. Человек выделяет бактерии, разлагающие в день от 30 до 50 г мочевины. Под влиянием бактерий мочевина разлагается, образуется карбонат аммония. Последний быстро распадается на воду, аммиак и углекислый газ .

Естественным источником углерода, используемого растениями для синтеза органического вещества, служит углекислота, входящая в состав атмосферы или находящаяся в растворённом состоянии в воде. В процессе фотосинтеза углекислота превращается в органическое вещество, служащее пищей животным. Дыхание, брожение и сгорание топлива возвращают углекислоту в атмосферу.

Циркуляция биогенных элементов обычно сопровождается их химическими превращениями. Нитратный азот, может превращаться в белковый, затем переходить в мочевину, превращаться в аммиак и вновь синтезироваться в нитратную форму под влиянием микроорганизмов. В биохимическом цикле азота действуют различные механизмы, как биологические, так и химические.

Лишь зелёные растения способны фиксировать световую энергию и использовать в питании простые неорганические вещества. Такие организмы выделяют в самостоятельную группу и называют автотрофами, или продуцентами — производителями биологического вещества. Они являются важнейшей частью любого сообщества, потому, что практически все остальные организмы прямо или косвенно зависят от снабжения веществом и энергией, запасёнными растениями. На суше автотрофы — это обычно крупные растения с корнями, тогда как в водоёмах их роль берут на себя микроскопические водоросли, обитающие в толще воды (фитопланктон).


Первые живые организмы развивались в воде, которая защищала их от воздействия ультрафиолетовых лучей. Кислород, выделявшийся в процессе фотосинтеза, в верхних слоях атмосферы под действием ультрафиолетовых лучей превращался в озон (его молекула содержит три атома кислорода — О3). По мере накопления озона произошло образование озонового слоя, который как экран, надёжно защитил поверхность Земли от губительных для живых организмов ультрафиолетовой солнечной радиации. Это позволило живым организмам выйти на сушу и заселить её.

В наши дни на Земле известно около 500 тыс. видов растений, и каждый год ботаники открывают новые. Разнообразие видов растений (флористическое) существенно различается в природных регионах планеты. Очевидно, что в пустынях видов гораздо меньше, чем в джунглях. Но как определить, где больше видов — в степях или в лесах и почему, например, в вечнозелёных тропических лесах их больше, чем в широколиственных. На эти вопросы отвечает наука биогеография, которая изучает географические закономерности формирования биологического разнообразия на Земле. Для того чтобы оценить, какие территории бедны видами, а какие богаты, составляют карты биоразнообразия. На них разными цветами отображают области с различным числом видов, приходящихся на единицу площади.
Конкретной (или локальной) флорой называют количество высших сосудистых растений на площади примерно в 100 км2. На островах Франца-Иосифа в приполярной области оно не превышает 50-100 видов, в тундре составляет 200-300, в тайге — 400-600, в лесостепи достигает 900 видов, в степях — 900-1000, в тропиках — более 1000.


Круговорот веществ и энергии в экосистемах обусловлен жизнедеятельностью организмов и является необходимым условием их существования. Круговороты не замкнуты, поэтому химические элементы накапливаются во внешней среде и организмах. Углерод поглощается растениями в процессе фотосинтеза и выделяется организмами в процессе дыхания. Он так же накапливается в среде в виде топливных ископаемых, а в организмах в виде запасов органических веществ. Азот превращается в соли аммония и нитраты в результате деятельности азотфиксирующих и нитрифицирующих бактерий. Затем, после использования соединений азота организмами и денитрификации редуцентами азот возвращается в атмосферу. Сера находится в виде сульфидов и свободной серы в составе морских осадочных пород и почвы. Превращаясь в сульфаты, в результате окисления серобактериями, она включается в ткани растений, затем вместе с остатками их органических соединений подвергается воздействию анаэробных редуцентов. Образовавшийся в результате их деятельности сероводород снова окисляется серобактериями. Фосфор содержится в составе фосфатов горных пород, в пресноводных и океанических отложениях, в почвах. В результате эрозии фосфаты вымываются и, в кислой среде переходят в растворимое состояние с образованием фосфорной кислоты, которая усваивается растениями. В тканых животных фосфор входит в состав нуклеиновых кислот, костей. В результате разложения редуцентами остатков органических соединений, он снова возвращается в почвы, а затем в растения.
К основным особенностям живого вещества относится:
- Способность быстро осваивать все свободное пространство.
- Движение не только пассивное, но и активное.
- Устойчивость при жизни и быстрое разложение после смерти.
- Высокая адаптация к различным условиям.
- Высокая скорость протекания реакций.