
Очень важное свойство генетического кода — специфичность, т.е. один триплет всегда кодирует только одну аминокислоту. Генетический код универсален для всех живых организмов от бактерии до человека.

Так как в молекуле ДНК содержатся сотни генов, то в её состав обязательно входят триплеты, являющиеся знаки препинания (УГА, УАГ, УАА) и обозначающие начало или конец того или иного гена. Ни одна т-РНК к такому триплету присоединиться не может, так как антикодонов к ним у т-РНК не бывает. В этот момент синтез белка заканчивается.

Рибосома доходит до одного из так называемых знака препинания или стоп-кодонов (УАА, УАГ или УГА). Эти кодоны не кодируют аминокислоты, они только лишь показывают, что синтез белка должен быть завершён. Белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует присущую этому белку структуру.


Покинув ядро, и-РНК направляется в цитоплазму, к рибосоме. Рибосома обеспечивает правильное взаимодействие и-РНК с молекулами т-РНК и выстраивание полипептидной цепи в точном соответствии с инструкцией, записанной на и-РНК. Как правило, синтез молекулы одного белка происходит многократно, причём соединение молекулы и-РНК со следующей рибосомой происходит, как только предыдущая продвинется и освободит достаточно места. Такие бусы из рибосом, нанизанных на и-РНК, называют полисомами.

Считывание информации с молекулы ДНК происходит подобно процессу репликации (копирование), но с помощью других ферментов. При этом раскрывается не вся ДНК, а только нужный участок. Сборка молекулы ведётся на одной цепочке, и на этот раз приглашаются РНК-нуклеотиды. Из них строится молекула информационной РНК (и-РНК). Таким образом, информация о последовательности аминокислот в белке переводится с языка ДНК на язык РНК носит название транскрипции.

Молекула т-РНК представляет собой цепочку нуклеотидов, сложенную в форме листка клевера. «Черешок» т-РНК предназначен для захвата определённой аминокислоты. На среднем «листке» т-РНК находится антикодон — три нуклеотида, комплементарные тому триплету и-РНК, который обозначает данную аминокислоту. При этом каждой аминокислоте соответствует особый т-РНК. Процесс, когда т-РНК приносят аминокислоты на рибосомы носит название трансляция. Это последний этап в синтезе белка происходящий в цитоплазме клетки.

Свойства белков определяется прежде всего их первичной структурой, т.е. последовательностью аминокислот в молекуле белка. Наследственная информация о первичной структуре белка заключена в последовательности нуклеотидов в молекулах двуцепочечной ДНК.

На втором этапе синтеза белка (трансляция), транспортная РНК способна «опознать» своим антикодоном триплет, на котором находится рибосома. И если антикодон комплементарен этому триплету и-РНК, аминокислота отсоединяется от «черешка листа» и присоединяется пептидной связью к растущей белковой цепочке. В этот момент рибосома сдвигается по и-РНК на следующий триплет, а очередная т-РНК «подносит» необходимую аминокислоту синтезируемого белка.

Все рибосомы, синтезирующие один и тот же белок, закодированный в данной и-РНК, называется полисомой.


Этапами биосинтеза считаются: транскрипция — снятие информации с ДНК молекулой и-РНК, трансляция — снятие информации с и-РНК молекулами т-РНК, формирование полипептидной цепи, окончание синтеза посредством стоп-кодонов.


Триплед ДНК ему комплементарен — ТЦГ.

Процессы удвоения ДНК, синтез РНК и белков в неживой природе не встречаются. Они относятся к так называемым реакциям матричного синтеза.
К реакциям матричного синтеза относят репликацию ДНК, синтез и-РНК на ДНК (транскрипцию), и синтез белка на и-РНК (трансляцию), а также синтез РНК или ДНК на РНК вирусов. Матричный тип реакций лежит в основе способности живых организмов воспроизводить себе подобных.